The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition
نویسندگان
چکیده
The P2X7 receptor mediates extracellular ATP signaling implicated in the development of devastating diseases such as chronic pain and cancer. Activation of the P2X7 receptor leads to opening of the characteristic dye-permeable membrane pore for molecules up to ~900 Da. However, it remains controversial what constitutes this peculiar pore and how it opens. Here we show that the panda receptor, when purified and reconstituted into liposomes, forms an intrinsic dye-permeable pore in the absence of other cellular components. Unexpectedly, we found that this pore opens independent of its unique C-terminal domain. We also found that P2X7 channel activity is facilitated by phosphatidylglycerol and sphingomyelin, but dominantly inhibited by cholesterol through direct interactions with the transmembrane domain. In combination with cell-based functional studies, our data suggest that the P2X7 receptor itself constitutes a lipid-composition dependent dye-permeable pore, whose opening is facilitated by palmitoylated cysteines near the pore-lining helix.
منابع مشابه
P2X7 receptor activates multiple selective dye-permeation pathways in RAW 264.7 and human embryonic kidney 293 cells.
P2X7 receptor has gained an increasing importance as a drug target. One important response to P2X7 receptor stimulation is the uptake of large molecular weight tracers into cells. However, mechanism for this response is not understood clearly, but it is generally believed that a nonselective large pore protein forms this P2X7 receptor-activated permeability pathway. We examined human embryonic ...
متن کاملPlasma Membrane Cholesterol as a Regulator of Human and Rodent P2X7 Receptor Activation and Sensitization*
P2X7 receptors are nonselective cation channels gated by high extracellular ATP, but with sustained activation, receptor sensitization occurs, whereby the intrinsic pore dilates, making the cell permeable to large organic cations, which eventually leads to cell death. P2X7 receptors associate with cholesterol-rich lipid rafts, but it is unclear how this affects the properties of the receptor ch...
متن کاملP2X7 receptor channels allow direct permeation of nanometer-sized dyes.
P2X receptors are widely distributed in the nervous system, and P2X7 receptors have roles in neuropathic pain and in the release of cytokines from microglia. They are trimeric membrane proteins, which open an integral ion channel when ligated by extracellular ATP. This channel is preferentially permeable to small cations (sodium, potassium, calcium) but also allows permeation of larger cations ...
متن کاملThe Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation
Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the...
متن کاملPannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor.
P2X(7) receptors are ATP-gated cation channels; their activation in macrophage also leads to rapid opening of a membrane pore permeable to dyes such as ethidium, and to release of the pro-inflammatory cytokine, interleukin-1beta (IL-1beta). It has not been known what this dye-uptake path is, or whether it is involved in downstream signalling to IL-1beta release. Here, we identify pannexin-1, a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017